21st Century Nuclear Techniques and Research for Food Safety, Food provenance and Agriculture

Debashish Mazumder

Background

- Food fraud costs the global food industry \$52 billion per year [Price Waterhouse Coopers]
- One in five species of seafood tested in the USA were mislabelled [OCEANA]
- Seafood is the most confiscated food product in the world [INTERPOL]

Combating Food Fraud

Techniques currently used

- DNA profiling
- Protein extraction
- Fatty acids
- Blockchain Electronic tagging
 Elemental and isotopic analysis (ANSTO)

Gopi, K., **Mazumder, D**., Sammut, J., & Saintilan, N. (2019). Determining the provenance and authenticity of seafood: A review of current methodologies. *Trends in Food Science & Technology, 91*, 294-304.

Stable isotope analysis

2 MegaVolt STAR Accelerator for Ion Beam Analysis (IBA)

X-ray fluorescence using ITRAX

Food quality analysis at NMI

National Measurement Institute

Neutron Activation Analysis (NAA)

Isotopic and elemental fingerprinting analysis at ANSTO

ANSTO

Results based on SIA and Itrax data combined			
		Source of origin	
Sample	Source (assumed by Erik)	Australian	Overseas
Sample 1 (ANSTO code J1)	North QLD	Data not available	
Sample 2 (ANSTO code J3)	QLD	Australian confirmed (97%). Also, both elements and isotope fingerprints matching 100% with Queensland farmed prawn.	
Sample 3 (ANSTO code J5)	Unknown		About 66% possibility
Sample 4 (ANSTO code J7)	Unknown		About 85% possibility
Sample 5 (ANSTO Code J9)	Unknown		About 71% possibility
Sample 6 (ANSTO code J11)	Unknown	About 59% possibility	

Case study 2: Market chain traceability and provenance

ANSTO

Case study-3: Stop illegal trade of endangered animals

SCIENTIFIC REPORTS

OPEN Novel detection of provenance in the illegal wildlife trade using elemental data

Kate J. Brandis (3), Phoebe J. B. Meagher², Lydia J. Tong², Michelle Shaw², Debashish Mazumder³, Patricia Gadd³ & Daniel Ramp⁴

Received: 7 June 2018

Accepted: 4 October 2018

Published online: 18 October 2018

Despite being the fourth largest criminal market in the world, no forensic tools have been sufficiently developed to accurately determine the legal status of seized animals and their parts. Although legal trading is permissible for farmed or captive-bred animals, many animals are illegally removed from the wild and laundered by masquerading them as captive bred. Here we present high-resolution x-ray fluorescence (XRF) as a non-invasive and cost-effective tool for forensic classification. We tested the efficacy of this technique by using machine learning on a training set of zoo specimens and wild-caught individuals of short-beaked echidas (Tac/tygl *ossus cauleatus*), a small insectivorous monotreme in Australia. XRF outperformed stable isotope analysis (A³²C, A³⁴D, reducing overall classification error below 4%. XRF has the added advantage of providing samples every 200 µmon a single quill, enabling 100% classification accuracy by taking the consensus of votes per quill. This accurate and cost-effective forensit technique could provide a much needed in *situ* solution for combating the illegal laundering of wildlife, and conversely, assist with certification of legally bred animals.

ANSTO

Testing chicken meat

Food fraud is costing the global food industry \$50 billion annually

Benefits of food provenance technology

- Detailed and scientifically-validated model, help build consumer confidence in premium products, nationally and internationally.
- This technique provides accountability, which may act as a deterrent to fraudulent practices and avoid the need for court cases.
- The method will help the food industries with branding their produce and complement certification methods.
- This method has the potential to develop unique fingerprints for sustainable produce, which is important for food and agri-businesses.

Contact: Debashish Mazumder: <u>dma@ansto.gov.au</u>

